数据结构中的凸包示例
在这里,我们将看到一个关于凸包的示例。假设我们有一组要点。我们必须通过减少点的数量来制作一个多边形,该点将覆盖所有给定的点。在本节中,我们将看到JarvisMarch算法来获取凸包。
JarvisMarch算法用于从一组给定的数据点中检测凸包的角点。
从数据集的最左点开始,我们通过逆时针旋转将点保留在凸包中。从当前点开始,我们可以通过从当前点检查这些点的方向来选择下一个点。当角度最大时,将选择该点。完成所有点后,当下一个点是起点时,停止算法。
输入-点集:{(-7,8),(-4,6),(2,6),(6,4),(8,6),(7,-2),(4,-6),(8,-7),(0,0),(3,-2),(6,-10),(0,-6),(-9,-5),(-8,-2),(-8,0),(-10,3),(-2,2),(-10,4)}
输出-凸包的边界点是-
(-9, -5) (6, -10) (8, -7) (8, 6) (-7, 8) (-10, 4) (-10, 3)
算法
findConvexHull(points, n)
Input: The points, number of points.
Output: Corner points of convex hull.
Begin
start := points[0]
for each point i, do
if points[i].x < start.x, then // get the left most point
start := points[i]
done
current := start
add start point to the result set.
define colPts set to store collinear points
while true, do //start an infinite loop
next := points[i]
for all points i except 0th point, do
if points[i] = current, then
skip the next part, go for next iteration
val := cross product of current, next, points[i]
if val > 0, then
next := points[i]
clear the colPts array
else if cal = 0, then
if next is closer to current than points[i], then
add next in the colPts
next := points[i]
else
add points[i] in the colPts
done
add all items in the colPts into the result
if next = start, then
break the loop
insert next into the result
current := next
done
return result
End示例
#include<iostream>
#include<set>
#include<vector>
using namespace std;
struct point{ //define points for 2d plane
int x, y;
bool operator==(point p2){
if(x == p2.x && y == p2.y)
return 1;
return 0;
}
bool operator<(const point &p2)const{ //dummy compare function used to sort in set
return true;
}
};
int crossProduct(point a, point b, point c){ //finds the place of c from ab vector
int y1 = a.y - b.y;
int y2 = a.y - c.y;
int x1 = a.x - b.x;
int x2 = a.x - c.x;
return y2*x1 - y1*x2; //if result < 0, c in the left, > 0, c in the right, = 0, a,b,c are collinear
}
int distance(point a, point b, point c){
int y1 = a.y - b.y;
int y2 = a.y - c.y;
int x1 = a.x - b.x;
int x2 = a.x - c.x;
int item1 = (y1*y1 + x1*x1);
int item2 = (y2*y2 + x2*x2);
if(item1 == item2)
return 0; //when b and c are in same distance from a
else if(item1 < item2)
return -1; //when b is closer to a
return 1; //when c is closer to a
}
set<point> findConvexHull(point points[], int n){
point start = points[0];
for(int i = 1; i<n; i++){ //find the left most point for starting
if(points[i].x < start.x)
start = points[i];
}
point current = start;
set<point> result; //set is used to avoid entry of duplicate points
result.insert(start);
vector<point> *collinearPoints = new vector<point>;
while(true){
point nextTarget = points[0];
for(int i = 1; i<n; i++){
if(points[i] == current) //when selected point is current point, ignore rest part
continue;
int val = crossProduct(current, nextTarget, points[i]);
if(val > 0){ //when ith point is on the left side
nextTarget = points[i];
collinearPoints = new vector<point>; //reset collinear points
}else if(val == 0){ //if three points are collinear
if(distance(current, nextTarget, points[i]) < 0){ //add closer one to collinear list
collinearPoints->push_back(nextTarget);
nextTarget = points[i];
}else{
collinearPoints->push_back(points[i]); //when ith point is closer or same as nextTarget
}
}
}
vector<point>::iterator it;
for(it = collinearPoints->begin(); it != collinearPoints->end(); it++){
result.insert(*it); //add allpoints in collinear points to result set
}
if(nextTarget == start) //when next point is start it means, the area covered
break;
result.insert(nextTarget);
current = nextTarget;
}
return result;
}
int main(){
point points[] = {
{-7,8},{-4,6},{2,6},{6,4},{8,6},{7,-2},{4,-6},{8,-7},{0,0},
{3,-2},{6,-10},{0,-6},{-9,-5},{-8,-2},{-8,0},{-10,3},{-2,2},{-10,4}};
int n = 18;
set<point> result;
result = findConvexHull(points, n);
cout << "Boundary points of convex hull are: "<<endl;
set<point>::iterator it;
for(it = result.begin(); it!=result.end(); it++)
cout << "(" << it->x << ", " <<it->y <<") ";
}输出结果
Boundary points of convex hull are: (-9, -5) (6, -10) (8, -7) (8, 6) (-7, 8) (-10, 4) (-10, 3)