python3+opencv3识别图片中的物体并截取的方法
如下所示:
运行环境:python3.6.4
opencv3.4.0
#-*-coding:utf-8-*-
"""
Note:使用Python和OpenCV检测图像中的物体并将物体裁剪下来
"""
importcv2
importnumpyasnp
#step1:加载图片,转成灰度图
image=cv2.imread("353.jpg")
gray=cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
#step2:用Sobel算子计算x,y方向上的梯度,之后在x方向上减去y方向上的梯度,通过这个减法,我们留下具有高水平梯度和低垂直梯度的图像区域。
gradX=cv2.Sobel(gray,cv2.CV_32F,dx=1,dy=0,ksize=-1)
gradY=cv2.Sobel(gray,cv2.CV_32F,dx=0,dy=1,ksize=-1)
#subtractthey-gradientfromthex-gradient
gradient=cv2.subtract(gradX,gradY)
gradient=cv2.convertScaleAbs(gradient)
#showimage
cv2.imshow("first",gradient)
cv2.waitKey()
#step3:去除图像上的噪声。首先使用低通滤泼器平滑图像(9x9内核),这将有助于平滑图像中的高频噪声。
#低通滤波器的目标是降低图像的变化率。如将每个像素替换为该像素周围像素的均值。这样就可以平滑并替代那些强度变化明显的区域。
#然后,对模糊图像二值化。梯度图像中不大于90的任何像素都设置为0(黑色)。否则,像素设置为255(白色)。
#blurandthresholdtheimage
blurred=cv2.blur(gradient,(9,9))
_,thresh=cv2.threshold(blurred,90,255,cv2.THRESH_BINARY)
#SHOWIMAGE
cv2.imshow("thresh",thresh)
cv2.waitKey()
#step4:在上图中我们看到蜜蜂身体区域有很多黑色的空余,我们要用白色填充这些空余,使得后面的程序更容易识别昆虫区域,
#这需要做一些形态学方面的操作。
kernel=cv2.getStructuringElement(cv2.MORPH_RECT,(25,25))
closed=cv2.morphologyEx(thresh,cv2.MORPH_CLOSE,kernel)
#showimage
cv2.imshow("closed1",closed)
cv2.waitKey()
#step5:从上图我们发现图像上还有一些小的白色斑点,这会干扰之后的昆虫轮廓的检测,要把它们去掉。分别执行4次形态学腐蚀与膨胀。
#performaseriesoferosionsanddilations
closed=cv2.erode(closed,None,iterations=4)
closed=cv2.dilate(closed,None,iterations=4)
#showimage
cv2.imshow("closed2",closed)
cv2.waitKey()
#step6:找出昆虫区域的轮廓。
#cv2.findContours()函数
#第一个参数是要检索的图片,必须是为二值图,即黑白的(不是灰度图),
#所以读取的图像要先转成灰度的,再转成二值图,我们在第三步用cv2.threshold()函数已经得到了二值图。
#第二个参数表示轮廓的检索模式,有四种:
#1.cv2.RETR_EXTERNAL表示只检测外轮廓
#2.cv2.RETR_LIST检测的轮廓不建立等级关系
#3.cv2.RETR_CCOMP建立两个等级的轮廓,上面的一层为外边界,里面的一层为内孔的边界信息。如果内孔内还有一个连通物体,这个物体的边界也在顶层。
#4.cv2.RETR_TREE建立一个等级树结构的轮廓。
#第三个参数为轮廓的近似方法
#cv2.CHAIN_APPROX_NONE存储所有的轮廓点,相邻的两个点的像素位置差不超过1,即max(abs(x1-x2),abs(y2-y1))==1
#cv2.CHAIN_APPROX_SIMPLE压缩水平方向,垂直方向,对角线方向的元素,只保留该方向的终点坐标,例如一个矩形轮廓只需4个点来保存轮廓信息
#cv2.findContours()函数返回两个值,一个是轮廓本身,还有一个是每条轮廓对应的属性。
#cv2.findContours()函数返回第一个值是list,list中每个元素都是图像中的一个轮廓,用numpy中的ndarray表示。
#每一个ndarray里保存的是轮廓上的各个点的坐标。我们把list排序,点最多的那个轮廓就是我们要找的昆虫的轮廓。
x=cv2.findContours(closed.copy(),cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
#importpdb
#pdb.set_trace()
_a,cnts,_b=x
c=sorted(cnts,key=cv2.contourArea,reverse=True)[0]
#OpenCV中通过cv2.drawContours在图像上绘制轮廓。
#第一个参数是指明在哪幅图像上绘制轮廓
#第二个参数是轮廓本身,在Python中是一个list
#第三个参数指定绘制轮廓list中的哪条轮廓,如果是-1,则绘制其中的所有轮廓
#第四个参数是轮廓线条的颜色
#第五个参数是轮廓线条的粗细
#cv2.minAreaRect()函数:
#主要求得包含点集最小面积的矩形,这个矩形是可以有偏转角度的,可以与图像的边界不平行。
#computetherotatedboundingboxofthelargestcontour
rect=cv2.minAreaRect(c)
#rect=cv2.minAreaRect(cnts[1])
box=np.int0(cv2.boxPoints(rect))
#drawaboundingboxaroundedthedetectedbarcodeanddisplaytheimage
cv2.drawContours(image,[box],-1,(0,255,0),3)
cv2.imshow("Image",image)
cv2.imwrite("contoursImage2.jpg",image)
cv2.waitKey(0)
#step7:裁剪。box里保存的是绿色矩形区域四个顶点的坐标。我将按下图红色矩形所示裁剪昆虫图像。
#找出四个顶点的x,y坐标的最大最小值。新图像的高=maxY-minY,宽=maxX-minX。
Xs=[i[0]foriinbox]
Ys=[i[1]foriinbox]
x1=min(Xs)
x2=max(Xs)
y1=min(Ys)
y2=max(Ys)
hight=y2-y1
width=x2-x1
cropImg=image[y1:y1+hight,x1:x1+width]
#showimage
cv2.imshow("cropImg",cropImg)
cv2.imwrite("bee.jpg",cropImg)
cv2.waitKey()
以上这篇python3+opencv3识别图片中的物体并截取的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持毛票票。