python使用pipeline批量读写redis的方法
用了很久的redis了。随着业务的要求越来越高。对redis的读写速度要求也越来越高。正好最近有个需求(需要在秒级取值1000+的数据),如果对于传统的单词取值,循环取值,消耗实在是大,有小伙伴可能考虑到多线程,但这并不是最好的解决方案,这里考虑到了redis特有的功能pipeline管道功能。
下面就更大家演示一下pipeline在python环境下的使用情况。
1、插入数据
>>>importredis >>>conn=redis.Redis(host='192.168.8.176',port=6379) >>>pipe=conn.pipeline() >>>pipe.hset("hash_key","leizhu900516",8) Pipeline>> >>>pipe.hset("hash_key","chenhuachao",9) Pipeline >> >>>pipe.hset("hash_key","wanger",10) Pipeline >> >>>pipe.execute() [1L,1L,1L] >>>
2、批量读取数据
>>>pipe.hget("hash_key","leizhu900516") Pipeline>> >>>pipe.hget("hash_key","chenhuachao") Pipeline >> >>>pipe.hget("hash_key","wanger") Pipeline >> >>>result=pipe.execute() >>>printresult ['8','9','10']#有序的列表 >>>
总结:redis的pipeline就是这么简单,实际生产环境,根据需要去编写相应的代码。思路同理,如:
redis_db=redis.Redis(host='127.0.0.1',port=6379) data=['zhangsan','lisi','wangwu'] withredis_db.pipeline(transaction=False)aspipe: foriindata: pipe.zscore(self.key,i) result=pipe.execute() printresult #[100,80,78]
线上的redis一般都是集群模式,集群模式下使用pipeline的时候,在创建pipeline的对象时,需要指定
pipe=conn.pipeline(transaction=False)
经过线上实测,利用pipeline取值3500条数据,大约需要900ms,如果配合线程or协程来使用,每秒返回1W数据是没有问题的,基本能满足大部分业务。
以上这篇python使用pipeline批量读写redis的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持毛票票。
声明:本文内容来源于网络,版权归原作者所有,内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:czq8825#qq.com(发邮件时,请将#更换为@)进行举报,并提供相关证据,一经查实,本站将立刻删除涉嫌侵权内容。